

Fakultät Elektrotechnik und Informationstechnik

Professur für Informationstheorie und Maschinelles Lernen

07.02.2025

Dr. Christian Scheunert,

7. Exercise on Convex Optimization

Problem 24: (Linear scaling invariance of Newton's method)

Show that Newton's method is unaffected by linear scaling of the variables. Consider a linear invertible transformation of variables x = Sy. Write Newton's method in the space of the Variables y and show that it generates the sequence $y^k = S^{-1}x^k$, where x^k is the sequence generated by Newton's method in the space of the variables x.

Problem 25: (Newton's method and Armijo rule)

- a) Consider the pure form of Newton's method for the case of the cost function $f(x) := ||x||^{\beta}$, where $\beta > 1$. For what starting points and values of β does the method converge to the optimal solution? What happens when $\beta \leq 1$?
- b) Repeat the previous part for the case where Newton's method with the Armijo rule is used.

Problem 26: (Least square problem)

Consider the least square problem

minimize
$$f(x) = \frac{1}{2} ||g(x)||^2 = \frac{1}{2} \sum_{i=1}^m ||g_i(x)||^2$$

subject to $x \in \mathbb{R}^n$, (0.2)

where g is a continuously differentiable function with component functions $g_1, \ldots, g_m : \mathbb{R}^n \to \mathbb{R}$ with m < n.

- a) Show that the Hessian matrix is singular at any optimal solution x^* for which $g(x^*) = 0$.
- b) Consider the case where g is linear and of the form g(x) = z Ax, where A is an $m \times n$ matrix. Show that there are infinitely many optimal solutions. Show also that if A has linearly independent rows, $x^* = A'(AA')^{-1}z$ is one of these solutions.

Problem 27: (Computational problem)

Consider the three-dimensional problem

minimize
$$f(x) = \frac{1}{2} (x_1^2 + x_2^2 + 0.1x_3^2) + 0.55x_3$$

subject to $1 = x_1 + x_2 + x_3, \quad 0 \le x_1, \ 0 \le x_2, \ 0 \le x_3.$ (0.3)

Show that the global minimum is $x^* = (1/2, 1/2, 0)$. Write a computer program implementing the conditional gradient method with the line minimization step size rule. (Here, there is a closed form expression for the minimizing step size) Verify computationally that for a starting point (ξ_1, ξ_2, ξ_3) with $\xi_i > 0$ for all i, and $\xi_1 \neq \xi_2$, the rate of convergence is not linear in the sense that

$$\lim_{k \to \infty} \frac{f(x^{k+1}) - f(x^*)}{f(x^k) - f(x^*)} = 1.$$