Fakultät Elektrotechnik und Informationstechnik

6. Exercise on

 Convex OptimizationProblem 20: (Stationary points of a function)
For each value of the scalar β, find the set of all stationary points of the following function of the two variables x and y

$$
f(x, y)=x^{2}+y^{2}+\beta x y+x+2 y .
$$

Which of these stationary points are global minima?

Problem 21: (Local minima of a function)
Find all local minima of the function $f(x, y)=x^{2} / 2+x \cos y$ using optimality conditions.

Problem 22: (Steepest descent method with constant step size)
Describe the behavior of the steepest descent method with constant step size s for the function $f(x)=\|x\|^{2+\beta}$, where $\beta \geq 0$. For which values of s and x^{0} does the method converge to $x^{*}=0$? Relate your answer to the assumptions of Proposition 4.3.2.

Problem 23: (Applying gradient method on quadratic functions)
Suppose that f is quadratic and of the form $f(x)=x^{\prime} Q x / 2-b^{\prime} x$, where Q is positive definite and symmetric.
a) Show that the Lipschitz condition $\|\nabla f(x)-\nabla f(y)\| \leq L\|x-y\|$ is satisfied with L equal to the maximum eigenvalue of Q.
b) Consider the gradient method $x^{k+1}=x^{k}-s D \nabla f\left(x^{k}\right)$, where D is positive definite and symmetric. Show that the method converges to $x^{*}=Q^{-1} b$ for every starting point x^{0} if and only if $s \in(0,2 / L)$, where L is the maximum eigenvalue of $D^{1 / 2} Q D^{1 / 2}$.

